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Abstract We show the existence of smooth stationary solutions for the inelastic Boltzmann
equation under the thermalization induced by a host medium with a fixed distribution. This
is achieved by controlling the Lp-norms, the moments and the regularity of the solutions to
the Cauchy problem together with arguments related to a dynamical proof for the existence
of stationary states.

1 Introduction

The dynamics of rapid granular flows is commonly modelled by a suitable modification
of the Boltzmann equation for inelastic hard-spheres interacting through binary collisions
[21, 45]. As well-known, in absence of energy supply, inelastic hard spheres are cooling
down and the energy continuously decreases in time. In particular, the Boltzmann collision
operator for inelastic hard spheres admits only trivial equilibria. This is no more the case if
the spheres are forced to interact with an external agency (thermostat) and, in such a case,
the energy supply may lead to a non-equilibrium steady state. For such driven system (in
a space homogeneous setting), the time-evolution of the one-particle distribution function
f (v, t), v ∈ R

3, t > 0 satisfies the following

∂tf = τQ(f,f )+ G(f ), (1.1)
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where τ ≥ 0 is a given constant, Q(f,f ) is the inelastic Boltzmann collision operator, ex-
pressing the effect of binary collisions of particles, while G(f ) models the forcing term.

There exist in the literature several physical possible choices for the forcing term G
in order to avoid the cooling of the granular gas: stochastic heating, particles heating or
scaled variables to study the cooling of granular systems and even a nonlinear forcing term
given by the quadratic elastic Boltzmann operator has been taken into account [29]. These
options have been studied first in the case of inelastic Maxwell models [5, 6, 10, 11, 14, 15,
17, 19, 23, 24, 44]. The most natural one is the pure diffusion thermal bath for which

G(f )= μ�f (1.2)

where μ > 0 is a constant, studied in [30, 39] for hard-spheres. Such a forcing term cor-
responds to the physical situation in which granular beads receive random kicking in their
velocity, like air-levitated disks [12]. Another example is the thermal bath with linear friction

G(f )= μ�f + λdiv(vf ), (1.3)

where λ and μ are positive constants. We also have to mention the fundamental example
of anti-drift forcing term which is related to the existence of self-similar solution to the
inelastic Boltzmann equation:

G(f )= −κ div(vf ), κ > 0. (1.4)

This problem has been treated in [37, 38, 41] for hard-spheres. For all the forcing terms
given by (1.2), (1.3), (1.4) it is possible to prove the existence of a non-trivial stationary
state F ≥ 0 such that

τQ(F,F )+ G(F )= 0.

Moreover, such a stationary state can be chosen to be smooth, i.e. F ∈ C∞(R3). Finally,
even if the uniqueness (in suitable class of functions) of such a stationary state is an open
problem, it can be shown for all these models that, in the weakly elastic regime in which
the restitution coefficient is close to unity, the stationary state is unique. For an exhaustive
survey of the “state of art” on the mathematical results for the evolution of granular media
see [45].

We are concerned here with a similar question when the forcing term G is given by a
linear scattering operator. This corresponds to a situation in which the system of inelastic
hard spheres is immersed into a so called thermal bath of particles, i.e. G is given by a linear
Boltzmann collision operator of the form:

G(f )= B[f,F1]
where F1 stands for the distribution function of the host fluid and B[·, ·] is a given colli-
sion operator for (elastic or inelastic) hard-spheres. The precise definition of G is given in
Sect. 2.1.

This kinetic model has been derived by means of a suitable asymptotic limit of binary
mixtures, for example in [16] for the elastic case in the Maxwell molecules frame. For hard-
spheres interactions, the model has already been tackled for instance in [8, 9] in order to
derive closed macroscopic equations for granular powders in a host medium. Let us also
mention the work [7] that investigates the case of a particle bath made of elastic hard-
spheres at thermodynamical equilibrium (i.e. F1 is a suitable Maxwellian). The deviations
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of the steady state (which is there assumed to exist) from the Gaussian state are analyzed
numerically. For inelastic Maxwellian molecules, the existence of a steady state for a particle
bath has been obtained in [23]. To our knowledge, the existence of a stationary solution of
(1.1) for particle bath heating and inelastic hard-spheres is an open problem and it is the
main aim of this paper.

Our strategy, inspired by several works in the kinetic theory of granular gases [30, 37] or
for coagulation-fragmentation problems [4, 28], is based on a dynamic proof of the existence
of stationary states, see [23, Lemma 7.3] for a review. The exact “fixed point theorem” used
here is reported in Sect. 2.2. The identification of a suitable Banach space and of a convex
subset that remains invariant during the evolution, is achieved by controlling moments and
Lp-norms of the solutions. In Sect. 3, we present regularity properties of the gain part of
both collision operators Q and G in (1.1). Then, in Sect. 4 we get at first uniform bounds
for the moments and the Lebesgue norms; in addition, we prove the strong continuity of
the semi-group associated to (1.1), and the existence and uniqueness of a solution to the
Cauchy problem. All this material allows to obtain, in Sect. 5, existence of non-trivial sta-
tionary states. Finally, Sect. 6 contains the study of regularity of stationary solutions. Many
technical estimates involving the quadratic dissipative operator Q(f,f ) are based on results
presented in [20, 37, 38, 43] and in the references therein, but their extension to the linear
inelastic operator G(f ) is not trivial at all for the following reasons. First, since G is not
quadratic, it induces a lack of symmetry particularly relevant in the study of propagation
of Lp-norms. Second, since the microscopic collision mechanism is affected by the mass
ratio of the two involved media (thermal bath and granular material), Povzner-like estimates
for G are not straightforward consequences of previous results from [30]. Along this work
we have put our emphasis on the new technical difficulties stemming from the linear in-
elastic operator, although we have included a sketch of the ideas, strategy and proofs in
[30, 42, 43] for completeness. Let us finally mention that our analysis also applies to linear
scattering model which corresponds to the case τ = 0. For such a linear Boltzmann operator,
we obtain the existence of an equilibrium solution, generalizing the results of [34, 36, 44] to
non-necessarily Maxwellian host distribution.

2 Preliminaries

Let us introduce the notations we shall use in the sequel. Throughout the paper we shall use
the notation 〈·〉 =√

1 + | · |2. We denote, for any η ∈ R, the Banach space

L1
η =

{
f : R

3 → R measurable; ‖f ‖L1
η
:=

∫

R3
|f (v)|〈v〉η dv <+∞

}
.

More generally we define the weighted Lebesgue space Lpη (R
3) (p ∈ [1,+∞), η ∈ R)

by the norm

‖f ‖Lpη (R3) =
[∫

R3
|f (v)|p〈v〉pη dv

]1/p

.

The weighted Sobolev space Wk,p
η (R3) (p ∈ [1,+∞), η ∈ R and k ∈ N) is defined by

the norm

‖f ‖
W
k,p
η (R3)

=
⎡

⎣
∑

|s|≤k
‖∂svf ‖p

L
p
η

⎤

⎦

1/p
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where ∂sv denotes the partial derivative associated with the multi-index s ∈ N
N . In the par-

ticular case p = 2 we denote Hk
η =Wk,2

η . Moreover this definition can be extended to Hs
η

for any s ≥ 0 by using the Fourier transform.

2.1 The Kinetic Model

We assume the granular particles to be perfectly smooth hard spheres of mass m = 1 per-
forming inelastic collisions. Recall that, as usual, the inelasticity of the collision mecha-
nism is characterized by a single parameter, namely the coefficient of normal restitution
0< ε < 1. To define the collision operator we write

Q(f,f )= Q+(f,f )− Q−(f,f ), (2.1)

where the “loss” term Q−(f,f ) is

Q−(f,f )(v)= f (f ∗ |v|), (2.2)

and the “gain” term Q+(f,f ) is given by

Q+(f,f )(v)= 1

2πε2

∫

R3

∫

S2
|q · n|f (′ṽ)f (′w̃)dn dw,

where q = v −w is the relative velocity, n ∈ S
2 is the unit vector in the direction of impact,

and (′ṽ,′w̃) are the pre-collisional velocities that result in v and w after collision. They read
as

′ṽ = v − ζ

ε
(q · n)n, ′w̃ =w+ ζ

ε
(q · n)n, (2.3)

with ζ = 1+ε
2 (notice that we always have 1

2 < ζ < 1). The weak formulation of the gain
term reads as

∫

R3
Q+(f,f )(v)ψ(v)dv = 1

2π

∫

R3

∫

R3
f (v)f (w)|q · n|

∫

S2
ψ(ṽ′)dn dw dv, (2.4)

where ψ(·) is a suitable test function and ṽ′ is a post-collisional velocity. We refer the
reader to [22, Appendix] for more details on the weak and strong forms of inelastic collision
operators. The collision transformation that puts v and w into correspondence with the post-
collisional velocities can be expressed as follows:

ṽ′ = v− ζ(q · n)n, w̃′ =w+ ζ(q · n)n. (2.5)

By making use of the following identity [13, 26],

∫

S2
(q̂ · n)+ ϕ(n(q · n))dn = 1

4

∫

S2
ϕ

(
q − |q|σ

2

)
dσ (2.6)

for any function ϕ, with q̂ = q/|q|, we can rewrite the operator both in strong form as

Q+(f,f )(v)= 1

4πε2

∫

R3

∫

S2
|v −w|f (′v)f (′w)dσ dw,
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where the pre-collisional velocities read as

′v = v + ζ

2ε
(|q|σ − q), ′w =w− ζ

2ε
(|q|σ − q), (2.7)

and in weak form (that will be the main tool in the rest of the paper) as

∫

R3
Q+(f,f )(v)ψ(v)dv = 1

4π

∫

R3

∫

R3
f (v)f (w)|q|

∫

S2
ψ(v′)dσ dw dv, (2.8)

with

v′ = v + ζ

2
(|q|σ − q), w′ =w− ζ

2
(|q|σ − q). (2.9)

Using the symmetry that allows us to exchange v with w in the integrals we obtain the
following symmetrized weak form

∫

R3
Q(f,f )(v)ψ(v)dv = 1

2

∫

R3

∫

R3
f (v)f (w)|q|Aζ [ψ](v,w)dw dv, (2.10)

where

Aζ [ψ](v,w)= 1

4π

∫

S2
(ψ(v′)+ψ(w′)−ψ(v)−ψ(w))dσ. (2.11)

The inelastic Boltzmann operator Q(f,f ) satisfies the basic conservation laws of mass
and momentum, obtained by taking ψ = 1, v in the weak formulation (2.10), since Aζ [1] =
Aζ [v] = 0. On the other hand, in the modelling of dissipative kinetic equations, conservation

of energy does not hold. In fact, we obtain Aζ [|v|2] = − 1−ε2

4 |v−w|2 from which we deduce

∫

R3
Q(f,f )(v)|v|2 dv = −1 − ε2

8

∫

R3

∫

R3
|v −w|3f (v)f (w)dv dw, (2.12)

where we observe the dissipation of kinetic energy. In the absence of any other source of
energy, the system cools down as t → ∞ following Haff’s law as proved in [37].

As already said in Introduction, the forcing term G arising in the kinetic equation (1.1)
is chosen to be a linear scattering operator, corresponding to the so called particle bath
heating,

G(f )(v) := L(f )(v)= 1

2πλ

∫

R3

∫

S2
|q · n| [e−2f (v�)F1(w�)− f (v)F1(w)

]
dw dn (2.13)

where λ is the mean free path, q = v−w, and v�, w� are the pre-collisional velocities which
result, respectively, in v and w after collision. The collision mechanism related to the linear
scattering operator is characterized by

(v−w) · n = −e(v� −w�) · n, (2.14)

where 0< e < 1 is the constant restitution coefficient (possibly different from ε). Here, we
will consider a similar separation of the operator into gain and loss terms, L(f )= L+(f )−
L−(f ), with obvious definitions. Here the host fluid is made of hard-spheres of mass m1

(possibly different from the traced particles mass m= 1) and the distribution function F1 of
the host fluid fulfills the following:
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Assumption 2.1 F1 is a nonnegative normalized distribution function with bulk velocity
u1 ∈ R

3 and temperature �1 > 0. Moreover, F1 is smooth in the following sense,

F1 ∈Hs
δ (R

3), ∀s, δ ≥ 0

and of finite entropy
∫

R3 F1(v) log F1(v)dv <∞.

Remark 2.2 It is well-known [2, Lemma 4] that for such F1 there exists some χ > 0 such
that

ν(v) := 1

2πλ

∫

R3

∫

S2
|(v −w) · n|F1(w)dw dn ≥ χ

√
1 + |v|2 ∀v ∈ R

3. (2.15)

The finiteness of entropy is not necessary to get this inequality, but it shall be essential
later on. A particular choice of the distribution function F1, corresponding to a host fluid at
thermodynamical equilibrium, is the following Maxwellian distribution

F1(v)= M1(v)=
(
m1

2π�1

)3/2

exp

{
−m1(v− u1)

2

2�1

}
, v ∈ R

3. (2.16)

Notice however that our approach remains valid for more general distribution function.

For particles of mass m= 1 colliding inelastically with particles of mass m1, the restitu-
tion coefficient being constant, the expressions of the pre-collisional velocities (v�,w�) may
be written as [21, 44]

v� = v − 2α
1 − β

1 − 2β
(q · n)n, w� =w+ 2(1 − α) 1 − β

1 − 2β
(q · n)n,

where α is the mass ratio and β denotes the inelasticity parameter

α = m1

1 +m1
∈ (0,1), β = 1 − e

2
∈ [0,1/2).

The post-collisional velocities are given by

v� = v− 2α(1 − β) (q · n)n, w� =w+ 2(1 − α)(1 − β) (q · n)n. (2.17)

As for the quadratic operator, by making use of the identity (2.6) we can rewrite the linear
operator as

L(f )(v)= 1

4πλ

∫

R3

∫

S2
|q| [e−2f (ṽ�)F1(w̃�)− f (v)F1(w)

]
dw dσ (2.18)

with

ṽ� = v− α 1 − β
1 − 2β

(q − |q|σ) , w̃� =w+ (1 − α) 1 − β
1 − 2β

(q − |q|σ) .

For such a description, the post-collisional velocities are

ṽ� = v− α(1 − β) (q − |q|σ) , w̃� =w+ (1 − α)(1 − β) (q − |q|σ) . (2.19)
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We consider Eq. (1.1) in the weak form: for any regular ψ =ψ(v), one has

d

dt

∫

R3
f (v, t)ψ(v)dv = τ

2

∫

R3

∫

R3
f (v, t)f (w, t)|q|Aζ [ψ](v,w)dw dv

+ 1

λ

∫

R3

∫

R3
|q|f (v, t)F1(w)Je[ψ](v,w)dv dw (2.20)

where

Je[ψ](v,w)= 1

2π

∫

S2
|q̂ · n| (ψ(v�)−ψ(v)) dn = 1

4π

∫

S2

(
ψ(ṽ�)−ψ(v)) dσ.

2.2 Proof of Stationary States: Basic Tools and Strategy

As stated in the Introduction, the final purpose of this paper is to prove the existence of a
non-trivial regular stationary solution F ≥ 0 to (1.1). Namely, we look for F ∈ L1, F ≥ 0
such that

τQ(F,F )+ L(F )= 0. (2.21)

Remark 2.3 Notice that such a problem is trivial in the elastic case ε = 1 and whenever
F1 is the Maxwellian distribution (2.16). Indeed, in such a case, the Maxwellian equilib-
rium distribution M� of L provided by [34, 36, 44] is a stationary solution to (1.1) since
Q(M�,M�)= 0 (elastic Boltzmann equation) and L(M�)= 0.

The main ingredients are to show the existence of fixed points for the flow map at any
time, and thus a continuity in time argument of the semi-group that allows to identify this
one-parameter family of fixed points as a stationary point of the flow. Contraction estimates
in Fourier-based distances were used in the Maxwellian case [10, 23] to derive the fixed
points of the flow map at any given time. Moreover, due to the strict contraction of the
distances they were unique. These contraction estimates are not available in the hard-spheres
case but they can be substituted by the Tykhonov Fixed Point Theorem as previously done
in [4, 28, 30, 37] for the existence part. Uniqueness of stationary solutions is an open issue
in our case. The exact result that will be used can be summarized as:

Lemma 2.4 (Dynamic proof of stationary states [4, 28, 30, 37]) Let Y be a Banach space
and (St )t≥0 be a continuous semi-group on Y such that

i) there exists Z a nonempty convex and weakly (sequentially) compact subset of Y which
is invariant under the action of St (that is Stz ∈ Z for any z ∈Z and t ≥ 0);

ii) St is weakly (sequentially) continuous on Z for any t > 0.

Then there exists z0 ∈Z which is stationary under the action of St (that is Stz0 = z0 for any
t ≥ 0).

The strategy is therefore to identify a Banach space Y and a convex subset Z ⊂ Y in
order to apply the above result. To do so, one shall prove that

• for any f0 ∈ Y , there is a solution f ∈ C([0,∞), Y ) to (1.1) with f (t = 0)= f0;
• the solution f is unique in Y and if f0 ∈ Z then f (t) ∈ Z for any t ≥ 0;
• the set Z is (weakly sequentially) compactly embedded into Y ;
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• solutions to (1.1) have to be (weakly sequentially) stable, i.e., for any sequence (fn)n ⊂
C([0,∞), Y ) of solutions to (1.1) with fn(t) ∈ Z for any t ≥ 0, then, there is a subse-
quence (fnk )k which converges weakly to some f ∈ C([0,∞), Y ) such that f is a solution
to (1.1).

If all the above points are satisfied by the evolution problem (1.1), then one can apply
Lemma 2.4 to the semi-group (St )t≥0 which to any f0 ∈ Y associates the unique solution
f (t) = St f0 to (1.1). Moreover, the regularity properties of the gain part of the operators
[37] shall provide us the needed regularity to show the existence of smooth stationary states.

3 Regularity of Gain Operators

We recall the following result, taken from [37, Theorem 2.5, Proposition 2.6] and based on
[20, 35], on the regularity properties of the gain part operator Q+(g, f ) that we state here
only for hard-spheres interactions in space dimension N = 3.

Proposition 3.1 (Regularity of the gain term Q+) For all s, η > 0, we have

∥∥Q+(g, f )
∥∥
Hs+1
η

≤ C(s, η, ε)
[
‖g‖Hs

η+2
‖f ‖Hs

η+2
+ ‖g‖L1

η+2
‖f ‖L1

η+2

]

where the constant C(s, η, ε) > 0 only depends on the restitution coefficient ε ∈ (0,1],
s and η. Moreover, for any p ∈ [1,∞) and δ > 0, there exist θ ∈ (0,1) and a constant
Cδ > 0, only depending on p, ε and δ, such that

∫

R3
Q+(f,f )f p−1 dv ≤ Cδ‖f ‖1+pθ

L1 ‖f ‖p(1−θ)
Lp + δ‖f ‖L1

2
‖f ‖p

L
p
1/p
.

On the other hand, the linear operator L(f ) is quite similar to the quadratic Boltzmann
operator associated to hard-spheres interactions and constant restitution coefficient e by fix-
ing one of the distributions. In fact, it is possible to obtain the following similar result:

Proposition 3.2 (Regularity of the gain term L+) For all s, η > 0, we have

∥∥L+(f )
∥∥
Hs+1
η

≤ C(s, η, e)
[
‖F1‖Hs

η+2
‖f ‖Hs

η+2
+ ‖F1‖L1

η+2
‖f ‖L1

η+2

]
(3.1)

where the constant C(s, η, e) > 0 only depends on the restitution coefficient e ∈ (0,1],
s and η. Moreover, for any p ∈ (1,∞) and δ > 0, there exist q < p and a constant Kδ > 0,
only depending on p, e and δ, such that

∫

R3
L+(f )f p−1 dv

≤Kδ‖F1‖Lq‖f ‖p−1
Lp ‖f ‖L1 + δ

(
‖F1‖L1

2
‖f ‖p

L
p
1/p

+ ‖F1‖Lp1/p‖f ‖L1
2
‖f ‖p−1

L
p
1/p

)
. (3.2)

Proof The proof of these two estimates relies on the same steps as in Sects. 2.2, 2.3 and 2.4
of [37], see also [43]. We need just to have the same basic estimates as in their case. We start
with the proof of (3.1). An expression of the Fourier transform of L+ can be obtained as:

F
[

L+(f )
]
(ξ) :=

∫

R3
exp(−iξ · v)L+(f )(v)dv = 1

4πλ

∫

S2
Ĝ(ξ+, ξ−)dσ
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with G(v,w)= |v −w|f (v)F1(w), Ĝ its Fourier transform with respect to (v,w) and

ξ+ = (1 − α(1 − β))ξ + α(1 − β)|ξ |σ, ξ− = α(1 − β)ξ − α(1 − β)|ξ |σ.
With this expression at hand, it is immediate to generalize to L+ the regularity result in [37,
Theorem 2.5, Proposition 2.6] giving (3.1).

Now, let us prove the second result. We first notice that, as in [3], the gain operator L+
admits an integral representation. Actually, even if it is assumed in [3] that F1 is given by
the Maxwellian distribution (2.16), a careful reading of the calculations of [3] yields

L+f (v)=
∫

R3
f (w)k(v,w)dw, (3.3)

where

k(v,w)= 1

2e2γ 2|v−w|
∫

V2·(w−v)=0
F1

(
v+ V2 + 1 − 2γ

2γ
(w− v)

)
dV2

with γ = α 1−β
1−2β and γ = (1 − α) 1−β

1−2β . Arguing as in [37], we define the operator T related
to the Radon transform:

T : g ∈ L1(R3, dv) �→ T g(v)= 1

|v|
∫

z⊥v
g(μv + z)dz

where μ = 1 − 1−2γ
2γ . For any h ∈ R

3, let τh denote the translation operator τhf (v) =
f (v− h), for any v ∈ R

3. Then, for any g ∈ L1(R3, dv), one sees that

(τw ◦ T )(g)(v) = 1

|v −w|
∫

z⊥(v−w)
g(μ(v−w)+ z)dz

= 1

|v −w|
∫

z⊥(v−w)
g

(
v−w+ z+ 1 − 2γ

2γ
(w− v)

)
dz, ∀v,w ∈ R

3.

Choosing g = τ−wF1 leads to the following expression of the kernel k(v,w):

k(v,w)= 1

2e2γ 2
[τw ◦ T ◦ τ−w](F1)(v), v,w ∈ R

3.

This previous computation is at the heart of the arguments of [37, Theorem 2.2], from
which one gets a version of Lions’ Theorem [31–33] for a suitable regularized cut-off kernel
with collision frequency of the form Bm,n(|q|, q̂ ·σ)=�Sn(|q|)bSm(q̂ ·σ), with�Sn smooth

and with compact support [ 2
n
, n], and bSm smooth and supported in [−1 + 2

m
,1 − 2

m
]. More

precisely, defining the smoothed-out operator in angular and radial variables L+
Sm,n

as in
[37, Sect. 2.4]:

L+
Sm,n
(f )= 1

4πλe2

∫

R3

∫

S2
Bm,n(|q|, q̂ · σ)f (v�)F1(w�)dw dσ (3.4)

then, for any η ∈ R
+ and any p > 1, there is C(p,η,m,n) > 0 depending only on p, η and

(m,n), such that

‖L+
Sm,n
(f )‖Lpη ≤ C(p,η,m,n)‖F1‖Lqη‖f ‖L1

2|η|
(3.5)
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for some q < p given by q = 5p
3+2p if p ∈ (1,6] while q = p

3 if p ∈ [6,+∞) (see [37,
Corollary 2.4]). In particular, Hölder’s inequality leads to

∫

R3
L+
Sm,n
(f )f p−1 dv ≤

(∫

R3
f p dv

) p−1
p

‖L+
Sm,n
(f )‖Lp ≤ C(m,n)‖f ‖L1‖F1‖Lq‖f ‖p−1

Lp

for some explicit constant C(m,n) > 0.
Similarly, one can define the remainder part of L+ which splits as

L+ − L+
Sm,n

=: L+
Rm,n

= L+
RSm,n

+ L+
SRm,n

+ L+
RRm,n

with

L+
RSm,n

(f ) = 1

4πλe2

∫

R3

∫

S2
�Rn(|q|)bSm(q̂ · σ)f (v�)F1(w�)dw dσ,

L+
SRm,n

(f ) = 1

4πλe2

∫

R3

∫

S2
�Sn(|q|)bRm(q̂ · σ)f (v�)F1(w�)dw dσ,

L+
RRm,n

(f ) = 1

4πλe2

∫

R3

∫

S2
�Rn(|q|)bRm(q̂ · σ)f (v�)F1(w�)dw dσ,

where �Rn(|q|)= |q| −�Sn(|q|) and bRm(q̂ · σ)= 1 − bSm(q̂ · σ), q ∈ R
3, σ ∈ S

2. Hölder’s
inequality provides

∫

R3
L+
Rm,n
(f )f p−1 dv ≤ ‖f ‖p−1

L
p
1/p

‖L+
Rm,n
(f )‖Lp−1/p′

with p′ such that 1
p

+ 1
p′ = 1, hence we have to estimate Lpη norms of L+

SRm,n
, L+

RSm,n
, L+

RRm,n

for η= −1/p′.
One can easily use [37, Theorem 2.1] to prove that, for any η ∈ R,

‖L+
SRm,n

(f )+ L+
RRm,n

(f )‖Lpη ≤ ε(m)
(

‖F1‖L1|1+η|+|η|
‖f ‖Lp1+η + ‖f ‖L1|1+η|+|η|

‖F1‖Lp1+η

)

for some explicit constant ε(m) that, since the angular part of the collision kernel is such
that limm→∞ ‖bR,m‖L1(S2) = 0, converges to 0 as m goes to infinity.

It remains to estimate the norm of L+
RSm,n

(f ). We follow now the lines of [42, Chap. 9,
p. 395] (which differs slightly from [37, Proposition 2.6] and is more adapted to the linear
case). Precisely, we split f as f = fr + frc = f (v)χ{|v|≤r} + f (v)χ{|v|>r} for some r > 0.
Then, as in [42, p. 395], there is some positive constant C > 0 such that

‖L+
RSm,n

(fr)‖Lpη ≤ C r
n

‖F1‖L1|2+η|+|η|
‖f ‖Lp1+η

while

‖L+
RSm,n

(frc )‖Lpη ≤ Cm
λ

r
‖f ‖L1|2+η|+|η|

‖F1‖Lp1+η

with λ > 0.
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Gathering all the above estimates we get, for η= −1/p′,
∫

R3
L+
Rm,n
(f )f p−1 dv ≤ C‖f ‖p−1

L
p
1/p

(
r

n
‖F1‖L1

2
‖f ‖Lp1/p + mλ

r
‖f ‖L1

2
‖F1‖Lp1/p

)

+ ε(m)
(

‖F1‖L1
1
‖f ‖p

L
p
1/p

+ ‖F1‖Lp1/p‖f ‖L1
1
‖f ‖p−1

L
p
1/p

)

≤
(
C
r

n
+ ε(m)

)
‖F1‖L1

2
‖f ‖p

L
p
1/p

+
(
C
mλ

r
+ ε(m)

)
‖F1‖Lp1/p‖f ‖L1

2
‖f ‖p−1

L
p
1/p
.

The proof follows then by choosing first m large enough then r large enough and subse-
quently n big enough. �

4 Regularity Estimates for the Cauchy Problem

4.1 Nonnegativeness of the Solution

Let us consider the Cauchy problem

∂tf = τQ(f,f )+ L(f ) (t > 0), f (t = 0)= f0 (4.1)

where f0 = f0(v) is a given initial state, f0 ∈ L1(R3). For any f ∈ L1, let

�(f )(v)= τ(| · | ∗ f )(v)+ ν(v)= τ
∫

R3
|v −w|f (w)dw+ ν(v).

With the notations of the previous section, it is easy to see that any solution f (t) to (4.1) is
given by the following Duhamel representation:

f (v, t)= f0(v)e
− ∫ t

0 �(f )(v,s)ds +
∫ t

0

(
τQ+(f,f )+ L+(f )

)
(v, s)e− ∫ t

s �(f )(v,r)dr ds. (4.2)

Since Q+(g, g)≥ 0 and L+(g)≥ 0 for any nonnegative g ∈ L1(R3), it is easy to deduce in a
very standard way, see for instance [1], that the solution f (v, t) given by (4.2) is nonnegative
for any t ≥ 0 provided f0 is, namely

f0(v)≥ 0 =⇒ f (v, t)≥ 0 ∀t > 0, v ∈ R
3.

4.2 Evolution of Mean Velocity and Temperature

Let f (v, t) be a nonnegative solution to (1.1). Define the mass density, the bulk velocity

�(t)=
∫

R3
f (v, t)dv, u(t)= 1

�(t)

∫

R3
vf (v, t)dv

and the temperature

�(t)= 1

3�(t)

∫

R3
|v − u(t)|2f (v, t)dv, ∀t ≥ 0.
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Note that (2.20) for ψ = 1 leads to the mass conservation identity �̇(t)= 0 i.e.

�(t)= �(0) := 1.

Now, (2.20) for ψ(v)= v yields

u̇(t)= −α(1 − β)
λ

∫

R3

∫

R3
|v −w|(v −w)f (v, t)F1(w)dv dw, ∀t ≥ 0

which illustrates the fact that the bulk velocity is not conserved. To estimate the second order
moment of f , let us introduce the auxiliary function:

F(t)=
∫

R3

∫

R3
|v −w|2f (v, t)F1(w)dv dw.

Notice that

F(t)=
∫

R3
|v − u1|2f (v, t)dv + 3

m1
�1 = 3�(t)+ |u(t)− u1|2 + 3

m1
�1. (4.3)

In particular, to obtain uniform in time bounds of the mean velocity and the temperature,
it is enough to provide uniform in time estimates of F(t). With the special choice ψ(v)=
|v − u1|2 one has

Aζ [ψ](v,w)= ζ(1 − ζ )|q|
4π

∫

S2
(σ · q − |q|)dσ = −ζ(1 − ζ )|q|2 = −1 − ε2

4
|q|2

while

Je[ψ](v,w) = 2α2(1 − β)2|q|2 − 2α(1 − β)〈q, v− u1〉
= −2κ(1 − κ)|q|2 − 2κ〈q,w− u1〉, v,w ∈ R

3

with κ = α(1 −β)= α
2 (1 + e) ∈ (0,1) and 〈·, ·〉 denoting the scalar product. It is easy to see

that

Ḟ (t) = − (1 − ε2)τ

8

∫

R3

∫

R3
f (v, t)f (w, t)|q|3 dv dw

− 2κ(1 − κ)
λ

∫

R3

∫

R3
|v −w|3f (v, t)F1(w)dv dw

+ 2κ

λ

∫

R3

∫

R3
|q|〈q,u1 −w〉f (v, t)F1(w)dv dw. (4.4)

Now, since
∫

R3 f (v, t)dv = 1 for any t ≥ 0, Jensen’s inequality yields

∫

R3
f (w, t)|q|3 dw ≥

∣∣∣∣v−
∫

R3
wf (w, t)dw

∣∣∣∣

3

= |v − u(t)|3
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and consequently
∫

R3

∫

R3
f (v, t)f (w, t)|q|3 dv dw ≥

∫

R3
|v − u(t)|3f (v, t)dv

≥
(∫

R3
|v− u(t)|2f (v, t)dv

)3/2

= (3�(t))3/2

where we used again Jensen’s inequality. In the same way,

∫

R3

∫

R3
|q|3f (v, t)F1(w)dv dw ≥

(∫

R3

∫

R3
|v−w|2f (v, t)F1(w)dv dw

)3/2

= F(t)3/2.

Finally, the third integral in (4.4) is estimated as
∫

R3

∫

R3
|q|〈q,u1 −w〉f (v, t)F1(w)dv dw

≤
∫

R3

∫

R3
|q|2|u1 −w|f (v, t)F1(w)dv dw

≤ 2
∫

R3
|v − u1|2f (v, t)dv

∫

R3
|w− u1|F1(w)dw+ 2

∫

R3
|w− u1|3F1(w)dw

≤ C0F(t)

where

C0 = 2 max

{∫

R3
|w− u1|F1(w)dw,

∫
R3 |w− u1|3F1(w)dw
∫

R3 |w− u1|2F1(w)dw

}
.

In conclusion, we obtain

Ḟ (t)≤ − (1 − ε2)τ

8
(3�(t))3/2 − 2κ(1 − κ)

λ
F (t)3/2 + 2C0κ

λ
F(t)≤ −γ1F(t)

3/2 + γ2F(t)

(4.5)
where γ1 = 2κ(1−κ)

λ
> 0 and γ2 = 2C0κ

λ
> 0. A simple use of the maximum principle shows

that

F(t)≤ max

{(
γ2

γ1

)2

,F (0)

}

, ∀t ≥ 0.

Because of (4.3), this leads to explicit upper bounds of the temperature�(t) and the velocity
|u(t)− u1|, namely

sup
t≥0

(
3�(t)+ |u(t)− u1|2

)
≤ max

{(
γ2

γ1

)2

,F (0)

}

<∞. (4.6)

4.3 Propagation of Moments

To extend the previous basic estimates, in the spirit of [18], we deduce from Povzner-like
estimates some useful inequalities on the moments

Yr (t)=
∫

R3
f (v, t)|v|2r dv, t ≥ 0, r ≥ 1
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where f (t) is a solution to (1.1) with unit mass. One sees from (1.1) that

d

dt
Yr (t)= τQr(t)+Lr(t),

where

Qr(t)=
∫

R3
Q(f,f )(v, t)|v|2r dv, Lr(t)=

∫

R3
L(f )(v, t)|v|2r dv.

The calculations provided in [18, 30] allow to estimate, in an almost optimal way, the quan-
tity Qr . One has to do the same for Lr(t) given by

Lr(t)= 1

λ

∫

R3

∫

R3
f (v, t)F1(w)|v −w|Je[| · |2r ](v,w)dv dw.

To do so, let us derive Povzner-like estimates for L in the spirit of [30]. The application
of the result of [30] is not straightforward since, obviously, L is not quadratic and because
of the influence of the mass ratio α = m1

m+m1
in the collision mechanism. Here, we will write

the mass of particles m even if taken as unity for the sake of the reader. To be precise, we
are looking for estimates of

Je[| · |2r ](v,w)= 1

2π

∫

S2
|q̂ · n| (|v�|2r − |v|2r) dn, r ≥ 1.

To do so, it shall be convenient to write

Je[| · |2r ](v,w)= 1

2πmr

∫

S2
|q̂ · n|{� (

m|v�|2)−� (
m|v|2)} dn (4.7)

where �(x)= xr , r ≥ 1. We adopt the strategy used in [30] and write

�
(
m|v�|2)−� (

m|v|2)= qe(�)(v,w)+�(m1|w|2)−�(m1|w�|2) (4.8)

where

qe(�)(v,w)=�
(
m|v�|2)+� (

m1|w�|2
)−� (

m|v|2)−� (
m1|w|2) .

Now,

qe(�)(v,w)= pe(�)(v,w)− ne(�)(v,w)

with
{

pe(�)(v,w)=�
(
m|v|2 +m1|w|2)−� (

m|v|2)−� (
m1|w|2)

ne(�)(v,w)=�
(
m|v|2 +m1|w|2)−� (

m|v�|2)−� (
m1|w�|2

)
.

Applying [30, Lemma 3.1] to the function � with x =m|v|2 and y =m1|w|2, we see that
there exists A> 0 such that

pe(�)(v,w)≤A
(
m|v|2� ′ (m1|w|2)+m1|w|2� ′ (m|v|2)

)
(4.9)

while, since � is nondecreasing and m|v|2 +m1|w|2 ≥m|v�|2 +m1|w�|2, there exists b > 0
such that

ne(�)(v,w)≥ bmm1|v�|2|w�|2� ′′ (m|v�|2 +m1|w�|2
)
.
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One can then write

ne(�)(v,w)≥ b�(v�,w�)
(
m|v�|2 +m1|w�|2

)2
� ′′ (m|v�|2 +m1|w�|2

)

where

�(v�,w�)= m|v�|2m1|w�|2
(m|v�|2 +m1|w�|2)2 .

To estimate better the above term �(v�,w�), it will be convenient to parametrize the post-
collisional velocities in the center of mass–relative velocity variables, which, with respect to
the usual transformation (see e.g. [30, (3.10)]) depend on the masses m and m1. Namely, let
us set

v� = z+m1�|q|�
m+m1

, w� = z−m�|q|�
m+m1

where z = mv + m1w, q = v − w and � is a parameter vector on the sphere S
2. The

parameter � is positive and such that v� −w� = �|v−w|�. In particular, one sees from the
representation (2.17) that 0< �≤ 1. In this representation, one has

|v�|2 = 1

(m+m1)2

(
|z|2 +m2

1�
2|q|2 + 2�m1|q||z| cosμ

)

and

|w�|2 = 1

(m+m1)2

(
|z|2 +m2�2|q|2 − 2�m|q||z| cosμ

)
,

where μ is the angle between z and � . One has then

m|v�|2 +m1|w�|2 = 1

m+m1

(
|z|2 + �2mm1|q|2

)
. (4.10)

One can check that

(m|v�|2)(m1|w�|2) = mm1

(m+m1)4

{[|z|2 + �2mm1|q|2
]2 − [|z|2 − �2mm1|q|2

]2
cos2μ

+ [
�(m1 −m)|z||q| + (|z|2 − �2mm1|q|2

)
cosμ

]2

− 4�2mm1|z|2|q|2 cos2μ
}
,

i.e.

(m|v�|2)(m1|w�|2)≥ mm1

(m+m1)4

[
|z|2 + �2mm1|q|2

]2
(1 − cos2μ).

Therefore

�(v�,w�)≥ mm1

(m+m1)2
sin2μ.

We obtain then an estimate similar to the one obtained in [30]. Moreover, it is easy to see
from (4.10) that

m|v�|2 +m1|w�|2 ≥ �2
(
m|v|2 +m1|w|2)
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and, arguing as in [30], there exists some constant η > 0 such that

ne[�](v,w)≥ η sin2μ
(
m|v|2 +m1|w|2)2

� ′′ (m|v|2 +m1|w|2) . (4.11)

This allows to prove the following:

Lemma 4.1 (Povzner-like estimates for L) Let �(x)= xr, r > 1. Then, there exist positive
constants kr and Ar such that

|v−w|Je[| · |2r ](v,w)≤Ar
(
|v||w|2r+|v|2r |w|

)
+m

r
1

mr
|v−w||w|2r−kr

(
|v|2r+1 +|w|2r+1

)
,

for any v,w ∈ R
3.

Proof Bearing in mind that Je[| · |2r ](v,w) is provided by (4.7) and (4.8), first of all, since
�(m1|w�|2)≥ 0, we note that

�(m|v�|2)−�(m|v|2)≤ qe[�](v,w)+� (
m1|w|2)= qe[�](v,w)+mr1|w|2r .

Then, integrating (4.9) and (4.11) with respect to the angle n ∈ S
2, one obtains, as in [30,

Lemma 3.3.] and [30, Lemma 3.4], that there are Ar and kr > 0 such that, for any v,w ∈ R
3:

|v−w| 1

2πmr

∫

S2
qe(�)(v,w)|q̂ · n|dn ≤Ar

(
|v||w|2r + |v|2r |w|

)
− kr

(
|v|2r+1 + |w|2r+1

)
,

and this concludes the proof. �

The above Lemma (restoring m= 1) together with the known estimates for Qr(t) allow
to formulate the following

Proposition 4.2 (Propagation of moments) Let f (t) be a solution to (1.1) with unit mass.
For any r ≥ 1, let

Yr (t)=
∫

R3
f (v, t)|v|2r dv, t ≥ 0.

Then, there are positive constants Ar , Kr and Cr that depend only on r,α,β, τ, λ and the
moments of F1 such that

d

dt
Yr (t)≤ Cr + ArYr (t)− KrY

1+1/2r
r (t), ∀t ≥ 0.

As a consequence, if Yr (0) <∞, then supt≥0 Yr (t) <∞.

Proof Recall that d
dtYr (t)= τQr(t)+Lr(t), where

Qr(t)=
∫

R3
Q(f,f )(v, t)|v|2r dv, Lr(t)=

∫

R3
L(f )(v, t)|v|2r dv.

According to [30, Lemma 3.4], there exist Ãr > 0 and k̃r > 0 such that

Qr(t)≤ ÃrY1/2(t)Yr (t)− k̃rYr+1/2(t), t ≥ 0.
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Now, from Lemma 4.1

λLr(t) ≤ ArMrY1/2(t)+ArM1/2Yr (t)+mr1
∫

R3

∫

R3
|v−w||w|2rf (v, t)F1(w)dw dv

− krYr+1/2(t)− krMr+1/2,

where Ms = ∫
R3 |w|2sF1(w)dw, s ≥ 1. One has

∫

R3

∫

R3
|v −w||w|2rf (v, t)F1(w)dw dv ≤MrY1/2(t)+Mr+1/2

and, denoting c1/2 := supt≥0 Y1/2(t) <∞, one has

Lr(t)≤ Cr + ArM1/2

λ
Yr (t)− kr

λ
Yr+1/2(t)

where Cr = (c1/2ArMr + c1/2m
r
1Mr +mr1Mr+1/2)/λ is a positive constant depending only

on α,β,λ, r ≥ 1 and the moments of F1. Gathering all these estimates leads to

d

dt
Yr (t)≤ Cr + ArYr (t)− KrYr+1/2(t)

where Ar = τ Ãrc1/2 + 1
λ
ArM1/2 > 0 and Kr = τ k̃r + kr

λ
> 0. Now, thanks to the mass

conservation and Hölder’s inequality, one gets Yr+1/2(t) ≥ Y
1+1/2r
r (t) which leads to the

desired result. �

Remark 4.3 We see from the definition of the positive constants Ar , Cr and Kr that the
above Proposition still holds true whenever τ = 0 (i.e. for the linear problem).

4.4 Propagation of Lebesgue Norms

Let us consider now an initial condition f0 ∈ L1
2 ∩ Lp for some 1 < p <∞. We compute

the time derivative of the Lp norm of the solution f (v, t) to (1.1):

1

p

d

dt

∫

R3
f p(v, t)dv = τ

∫

R3
Q+(f,f )f p−1 dv− τ

∫

R3
f p−1 Q−(f,f )dv

+
∫

R3
L+(f )f p−1 dv−

∫

R3
L−(f )f p−1 dv.

Using the fact that
∫

R3 f
p−1 Q−(f,f )dv ≥ 0 and L−(f )(v)= ν(v)f (v) where the collision

frequency ν(v) is given by

ν(v)= 1

2πλ

∫

R3

∫

S2
|(v −w) · n|F1(w)dw dn,

we obtain the estimate:

1

p

d

dt

∫

R3
f p(v, t)dv ≤ τ

∫

R3
Q+(f,f )f p−1 dv+

∫

R3
L+(f )f p−1 dv−

∫

R3
ν(v)f p(v, t)dv.
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Using the lower bound (2.15), we get

1

p

d

dt
‖f (t)‖pLp ≤ τ

∫

R3
Q+(f,f )f p−1 dv+

∫

R3
L+(f )f p−1 dv− χ‖f ‖p

L
p
1/p
.

Proposition 3.1 and the conservation of mass imply that, for any δ > 0, there is θ > 0 and
some Cδ such that

∫

R3
Q+(f,f )f p−1(v, t)dv ≤ Cδ‖f (t)‖p(1−θ)

Lp + δ‖f (t)‖L1
2
‖f (t)‖p

L
p
1/p
.

Moreover, Proposition 3.2 implies that, for any δ > 0,
∫

R3
L+(f )f p−1 dv ≤ C1‖f (t)‖p−1

Lp +C2δ

(
‖f (t)‖p

L
p
1/p

+ ‖f (t)‖L1
2
‖f (t)‖p−1

L
p
1/p

)
,

for some constants C1,C2 > 0 that depend only on p, δ, η,α, e and the norms of F1 in the
spaces involved in (3.2). Recall that there is someM2 such that

sup
t≥0

‖f (t)‖L1
2
= 1 + sup

t≥0

∫

R3
|v|2f (v, t)dv ≤M2 <∞.

Now, using Young’s inequality, xyp−1 ≤ 1
p
xp + p−1

p
yp , for any x, y ≥ 0, we have

∫

R3
L+(f )f p−1 dv ≤ C1‖f (t)‖p−1

Lp +C3δ

(
‖f (t)‖p

L
p
1/p

+Mp

2

)

for some constant C3 > 0. Collecting all the bounds above, we get the estimate

1

p

d

dt
‖f (t)‖pLp ≤ τCδ‖f (t)‖p(1−θ)

Lp + δτM2‖f (t)‖pLp1/p +C1‖f (t)‖p−1
Lp

+C3δ

(
‖f (t)‖p

L
p
1/p

+Mp

2

)
− χ‖f (t)‖p

L
p
1/p

≤ τCδ‖f (t)‖p(1−θ)
Lp +

(
δ(τM2 +C3)− χ

2

)
‖f (t)‖p

L
p
1/p

+C1‖f (t)‖p−1
Lp +C3δM

p

2 − χ

2
‖f (t)‖pLp ,

since ‖ · ‖Lp1/p ≥ ‖ ·‖Lp . Choosing now δ̄ such that δ̄(τM2 +C3) < χ/2, we get the existence

of positive constants C4, C5 and C6 such that

1

p

d

dt
‖f (t)‖pLp ≤ C4‖f (t)‖p(1−θ)

Lp +C5‖f (t)‖p−1
Lp −C6‖f (t)‖pLp +C3M

p

2 δ̄.

It is not difficult to get then that supt≥0 ‖f (t)‖Lp < ∞. This can be summarized in the
following

Proposition 4.4 (Propagation of Lp-norms) Let p ∈ (1,∞) and f0 ∈ L1
2 ∩ Lp with unit

mass. Then, the solution f (t) to (1.1) satisfies the following uniform bounds

sup
t≥0

(
‖f (t)‖L1

2
+ ‖f (t)‖Lp

)
<∞.
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Remark 4.5 Notice that the fact that F1 is of finite entropy (see Assumption 2.1) has been
used here above, via the lower bound (2.15), in order to control from below Lp norms
involving the loss operator L−. Whenever τ > 0, it is possible then to replace such estimates
involving L− by others that involve Q−. Notice also that, whenever τ = 0 (i.e. in the linear
case), only the above constant C4 vanishes and we still have supt≥0 ‖f (t)‖Lp <∞.

As a corollary, we deduce as in [37, Sect. 3.4], see also [25], the following non-
concentration result:

Proposition 4.6 (Uniform non-concentration) Let f0 be given with unit mass. Assume that
there exists some p ∈ (1,∞) such that f0 ∈ L1

2 ∩ Lp . Then, there exists some positive con-
stant ν0 such that

ν0 ≤
∫

R3
|v − u(t)|2f (v, t)dv ≤ 1/ν0, ∀t ≥ 0,

where f (v, t) is the solution to (1.1) with f (0)= f0 and u(t)= ∫
R3 vf (v, t)dv, t ≥ 0.

Proof Let f (t) be the solution to (1.1) with f (0)= f0. From the above Proposition, there
exists Cp > 0 such that supt≥0 ‖f (t)‖Lp ≤ Cp, and Hölder’s inequality implies that, for any
r > 0,

sup
t≥0

∫

{|v−u(t)|<r}
f (v, t)dv ≤ Cp

(
4π

3
r3

) p−1
p

.

Accordingly, there is some r0 > 0 such that
∫

{|v−u(t)|<r0}
f (v, t)dv ≤ 1

2
, ∀t ≥ 0.

Then, for any t ≥ 0, recalling that
∫

R3 f (v, t)dv = 1 for any t ≥ 0,
∫

R3
f (v, t)|v − u(t)|2 dv ≥

∫

{|v−u(t)|≥r0}
f (v, t)|v − u(t)|2 dv ≥ r2

0

∫

{|v−u(t)|≥r0}
f (v, t)dv

≥ r2
0

(
1 −

∫

{|v−u(t)|<r0}
f (v, t)dv

)
≥ r2

0

2

which concludes the proof. �

4.5 L1-Stability

As in [37], in order to prove the strong continuity of the semi-group (St )t≥0 associated to
(1.1), one has to provide an estimate of ‖f (t) − g(t)‖ for two solutions f (t) and g(t) of
(1.1) with initial conditions f (0), g(0) in some subspace of L1. This is the object of the
following stability result, inspired by [37, Proposition 3.2] and [41, Proposition 3.4].

Proposition 4.7 (L1-stability) Let f0, g0 be two nonnegative functions of L1
3 and let

f (t), g(t) ∈ C(R+,L1
2) ∩ L∞(R+,L1

3) be the associated solutions to (1.1). Then, there is
 > 0 depending only on supt≥0 ‖f (t)+ g(t)‖L1

3
such that

‖f (t)− g(t)‖L1
2
≤ ‖f0 − g0‖L1

2
exp( t), ∀t ≥ 0.
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Proof Let h(t)= f (t)− g(t). Then, h satisfies the following equation:

∂th(v, t)= τ {Q(f,f )− Q(g, g)} + L(h), h(0)= f0 − g0. (4.12)

As in [37, 41], the proof consists in multiplying (4.12) by ψ(v, t) = sgn(h(v, t))〈v〉2 and
integrating over R

3. We get

d

dt

∫

R3
|h(v, t)|〈v〉2 dv = I (t)+L(t)

where

I (t)= τ
∫

R3
{Q(f,f )− Q(g, g)}ψ(v, t)dv and L(t)=

∫

R3
L(h)(v, t)ψ(v, t)dv.

To estimate the integral I (t) we resume the arguments of [41, Proposition 3.4] that we shall
need again later. According to (2.10)

I (t)= τ

2

∫

R3

∫

R3
(f (v, t)f (w, t)− g(v, t)g(w, t)) |q|Aζ [ψ(t)](v,w)dw dv.

The change of variables (v,w) �→ (w,v) implies that

I (t)= τ

2

∫

R3

∫

R3
(f (v, t)− g(v, t)) (f (w, t)+ g(w, t)) |q|Aζ [ψ(t)](v,w)dw dv.

Moreover, it is easily seen from the definition of ψ that

(f (v, t)− g(v, t))Aζ [ψ(t)](v,w)

≤ 1

4π
|f (v, t)− g(v, t)|

∫

S2

(〈v′〉2 + 〈w′〉2 − 〈v〉2 + 〈w〉2
)

dσ

≤ 2 |f (v, t)− g(v, t)| 〈w〉2

where we used the fact that Aζ [〈·〉2](v,w)= − 1−ε2

4 |q|2 ≤ 0. Therefore,

I (t) ≤ τ
∫

R3

∫

R3
|q| |f (v, t)− g(v, t)| (f (w, t)+ g(w, t)) 〈w〉2 dv dw

≤ τ
∫

R3
|f (v, t)− g(v, t)| 〈v〉2 dv

∫

R3
(f (w, t)+ g(w, t)) 〈w〉3 dw

i.e.

I (t)≤ τ∥∥f (t)+ g(t)∥∥
L1

3

∥∥f (t)− g(t)∥∥
L1

2
, ∀t ≥ 0. (4.13)

On the other hand, recalling that L(h)(v, t)= L+(h)(v, t)− ν(v)h(v, t), from formula (3.3)
one has

L(t) =
∫

R3
ψ(v, t)dv

∫

R3
h(w, t)k(v,w)dw−

∫

R3
ν(v)|h(v, t)|〈v〉2 dv

≤
∫

R3
〈v〉2 dv

∫

R3
|h(w, t)|k(v,w)dw−

∫

R3
ν(v)|h(v, t)|〈v〉2 dv,
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i.e. L(t) ≤ ∫
R3 L(|h|)(v, t)〈v〉2 dv. Now, since

∫
R3 L(|h|)(v, t)dv = 0 for any h, one gets

that

L(t)≤
∫

R3
L(|h|)(v, t)|v|2 dv.

Resuming the calculations performed in Sect. 4.2 (see (4.4)), one gets that

∫

R3
L(|h|)(v, t)|v|2 dv ≤ −2κ(1 − κ)

λ

∫

R3

∫

R3
|v−w|3|h(v, t)|F1(w)dv dw

+ 2κ

λ

∫

R3

∫

R3
|q|〈q,−w〉|h(v, t)|F1(w)dv dw

≤ 2κ

λ

∫

R3

∫

R3
|q|2|w||h(v, t)|F1(w)dv dw.

This leads to

L(t)≤ 2κ

λ

(
2
∫

R3
|v|2|h(v, t)|dv

∫

R3
|w|F1(w)dw+ 2

∫

R3
|h(v, t)|dv

∫

R3
|w|3F1(w)dw

)

and, setting c+ = 4κ
λ

max{∫
R3 |w|F1(w)dw,

∫
R3 |w|3F1(w)dw}, we get

L(t)≤ c+
∫

R3
|h(v, t)|〈v〉2 dv = c+

∥∥f (t)− g(t)∥∥
L1

2
.

Gathering (4.13) together with the latter estimate and denoting then  = τ supt≥0 ‖f (t)+
g(t)‖L1

3
+ c+, we get the estimate

d

dt

∥∥f (t)− g(t)∥∥
L1

2
≤ ∥∥f (t)− g(t)∥∥

L1
2
, t ≥ 0

and the proof is achieved. �

4.6 Well-Posedness of the Cauchy Problem

We are in position to prove that the Boltzmann equation (1.1) admits a unique regular solu-
tion in the following sense:

Theorem 4.8 (Existence and uniqueness of solution to the Cauchy problem) Take an initial
datum f0 ∈ L1

3. Then, for all T > 0, there exists a unique solution f ∈ C([0, T ];L1
2) ∩

L∞(0, T ;L1
3) to the Boltzmann equation (1.1) such that f (v,0)= f0(v).

Proof Let T > 0 be fixed. The uniqueness in C([0, T ];L1
2)∩L∞(0, T ;L1

3) trivially follows
from Proposition 4.7. The proof of the existence is made in several steps, following the lines
of [41, Sect. 3.3], see also [29, 40].

Step 1. Let us first consider an initial datum f0 ∈ L1
4, and define the “truncated” collision

operators
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∫

R3
Qn(f,f )(v)ψ(v)dv = 1

2

∫

R3

∫

R3
1{|q|≤n}|q|f (v)f (w)Aζ [ψ](v,w)dw dv,

(4.14)∫

R3
Ln(f )(v)ψ(v)dv = 1

λ

∫

R3

∫

R3
1{|q|≤n}|q|f (v)F1(w)Je[ψ](v,w)dv dw

for any regular test function ψ . The operators Qn and Ln are bounded in any L1
q , and they

are Lipschitz in L1
2 on any bounded subset of L1

2. Therefore, following [1], we can use
the Banach fixed point theorem to get the existence of a solution 0 ≤ fn ∈ C([0, T ];L1

2) ∩
L∞(0, T ;L1

4) to the Boltzmann equation ∂tf = τQn(f,f )+ Ln(f ). Thanks to the uniform
propagation of moments in Proposition 4.2, there exists a constant CT > 0 (that does not
depend on n) such that

sup
[0,T ]

‖fn‖L1
4
≤ CT , ∀n ∈ N.

Step 2. Let us prove that the sequence (fn)n is a Cauchy sequence in C([0, T ];L1
2) ∩

L∞(0, T ;L1
4). For any m ≥ n, writing down the equation satisfied by fm − fn and multi-

plying it by ψ(v, t) = sgn(fm(v, t) − fn(v, t))〈v〉2 as in the proof of Proposition 4.7, we
get

d

dt

∫

R3
|fn(v, t)− fm(v, t)|〈v〉2 dv = Im,n(t)+ Jm,n(t)

where

Im,n(t)= τ
∫

R3
{Qm(fm,fm)− Qn(fn, fn)}ψ(v, t)dv

and

Jm,n(t)=
∫

R3
{Lm(fm)(v, t)− Ln(fn)(v, t)}ψ(v, t)dv.

We begin by estimating Im,n(t). It is easy to see that Im,n(t)= I 1
m,n(t)+ I 2

m,n(t) where

I 1
m,n(t)=

τ

2

∫

R3

∫

R3

(
fm(v, t)fm(w, t)− fn(v, t)fn(w, t)

)
Bm(q)Aζ [ψ(t)](v,w)dw dv,

while

I 2
m,n(t)=

τ

2

∫

R3

∫

R3
(Bm(q)−Bn(q))fn(v, t)fn(w, t)Aζ [ψ(t)](v,w)dw dv,

where Bn(q)= |q|1{|q|≤n}. Arguing as in the proof of (4.13), we get easily that

I 1
m,n(t)≤ τ

∥∥fn(t)+ fm(t)
∥∥
L1

3

∥∥fn(t)− fm(t)
∥∥
L1

2
, ∀t ≥ 0.

The estimate of I 2
m,n(t) is more involved. One observes first that

Bm(q)−Bn(q)= |q|1{n≤|q|≤m} ≤ |q| (1{|v|≥n/2} + 1{|w|≥n/2}
)
.

As in the proof of Proposition 4.7, one has

Aζ [ψ(t)](v,w)≤ 1

4π

∫

S2

(〈v′〉2 + 〈w′〉2 + 〈v〉2 + 〈w〉2
)

dσ ≤ 2
(〈v〉2 + 〈w〉2

)
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and, since |q| ≤ 〈v〉〈w〉, one gets

I 2
m,n(t) ≤ τ

∫

R3

∫

R3
fn(v, t)fn(w, t)|q|

(
1{|v|≥n/2} + 1{|w|≥n/2}

) (〈v〉2 + 〈w〉2
)

dw dv

≤ τ
∫

R3

∫

R3
fn(v, t)fn(w, t)〈v〉〈w〉 (〈v〉2 + 〈w〉2

) (
1{〈v〉≥n/2} + 1{〈w〉≥n/2}

)
dw dv.

It is not difficult to deduce then that

I 2
m,n(t)≤ 4τ

(∫

R3
fn(v, t)〈v〉3 dv

)(∫

R3
fn(v, t)〈v〉31{〈v〉≥n/2} dv

)
.

Since sup[0,T ] ‖fn(t)‖L1
4
≤ CT for any n ∈ N, the latter integral is estimated as

∫

R3
fn(v, t)〈v〉31{〈v〉≥n/2} dv ≤

∫

R3
fn(v, t)〈v〉41{〈v〉≥n/2}

dv

〈v〉 ≤ 2CT
n

and we get

I 2
m,n(t)≤ 4τ

(∫

R3
fm(v, t)〈v〉3 dv

)
2CT
n

≤ 8C2
T τ

n
, ∀t ∈ [0, T ], m≥ n.

Therefore,

Im,n(t)≤ 2τCT ‖fn(t)− fm(t)
∥∥
L1

2
+ 8C2

T τ

n
, ∀t ∈ [0, T ], m≥ n. (4.15)

We proceed in the same way with Jm,n(t). First, we notice that Jm,n(t) splits as Jm,n(t) =
J 1
m,n(t)+ J 2

m,n(t) with

J 1
m,n(t)=

1

λ

∫

R3

∫

R3
Bm(q)

[
fm(v, t)− fn(v, t)

]
F1(w)Je

[
ψ(t)

]
(v,w)dv dw

and

J 2
m,n(t)=

1

λ

∫

R3

∫

R3

[
Bm(q)−Bn(q)

]
fn(v, t)F1(w)Je

[
ψ(t)

]
(v,w)dv dw.

Arguing as in the proof of Proposition 4.7, we get

J 1
m,n(t)≤

∫

R3
Lm(|fn − fm|)(v, t)〈v〉2 dv ≤ 2κ

λ

∫

R3

∫

R3
|q|2|w||(fn − fm)(v, t)|F1(w)dv dw

and there exists a positive constant c+ such that

J 1
m,n(t)≤ c+

∥∥fn(t)− fm(t)‖L1
2
, ∀t ∈ [0, T ].

Let us now estimate J 2
m,n(t). As above,

J 2
m,n(t)=

1

λ

∫

R3

∫

R3
|q|1{n≤|q|≤m}fn(v, t)F1(w)Je

[
ψ(t)

]
(v,w)dv dw
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and

Je
[
ψ(t)

]
(v,w)≤ 1

2π

∫

S2
|q̂ · n| (〈v�〉2 + 〈v〉2

)
dn = Je

[〈·〉2
]+ 2

2π

∫

S2
|q̂ · n|〈v〉2 dn.

Calculations already performed lead then to

Je
[
ψ(t)

]
(v,w)≤ −2κ〈q,w〉 + 2〈v〉2 ≤ 2

(〈v〉〈w〉2 + 〈v〉2
)
, ∀v,w ∈ R

3.

Finally,

J 2
m,n(t) ≤ 2

λ

∫

R3

∫

R3
|q|1{|q|≥n}fn(v, t)F1(w)

(〈v〉〈w〉2 + 〈v〉2
)

dw dv

≤ 2

λ

∫

R3

∫

R3
1{|q|≥n}fn(v, t)F1(w)

(〈v〉3〈w〉 + 〈v〉2〈w〉3
)

dw dv.

Now, arguing as we did for I 2
m,n(t), there exists some constant C̃T that depends only on

‖F1‖L1
4

and supn sup[0,T ] ‖fn(t)‖L1
4

such that

J 2
m,n(t)≤

C̃T

n
, ∀m≥ n, t ∈ [0, T ].

Gathering all these estimates, we obtain the existence of constants C1(T ) and C2(T ) that do
not depend on m,n such that

d

dt

∫

R3
|fn(v, t)− fm(v, t)|〈v〉2 dv

≤ C1(T )‖fn(t)− fm(t)
∥∥
L1

2
+ C2(T )

n
, ∀t ∈ [0, T ], m≥ n.

This ensures that (fn)n is a Cauchy sequence in C([0, T ];L1
2). Denoting by f its limit, we

obtain that f ∈ C([0, T ];L1
2) ∩ L∞(0, T ;L1

4) is a solution to the Boltzmann equation (1.1)
(with the actual collision operators Q and L).

Step 3. When the initial datum f0 ∈ L1
3, we introduce the sequence of initial data

f0,j := f01{|v|≤j }. Since f0,j ∈ L1
4, we have the existence of a solution fj ∈ C([0, T ];L1

2) ∩
L∞(0, T ;L1

4) to the Boltzmann equation associated to the initial datum f0,j . Moreover,
there exists CT such that sup[0,T ] ‖fj‖L1

3
≤ CT . We establish again that (fj )j is a Cauchy

sequence in C([0, T ];L1
2) by using the L1-stability in Proposition 4.7. �

5 Existence of Non-Trivial Stationary State

All the material of the previous sections allows us to state our main result:

Theorem 5.1 (Existence of stationary solutions) For any distribution function F1(v) satis-
fying Assumption 2.1 and any τ ≥ 0, there exists a nonnegative F ∈ L1

2 ∩ Lp , p ∈ (1,∞)
with unit mass and positive temperature such that τQ(F,F )+ L(F )= 0.

Proof As already announced, the existence of stationary solution to (1.1) relies on the ap-
plication of Lemma 2.4 to the evolution semi-group (St )t≥0 governing (1.1). Namely, for
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f0 ∈ L1, let f (t)= St f0 denote the unique solution to (1.1) with initial state f (0)= f0. The
continuity properties of the semi-group are proved by the study of the Cauchy problem, re-
called in Sect. 4. Let us fix po ∈ (1,∞). On the Banach space Y = L1

2, thanks to the uniform
bounds on the L1

3 and Lpo norms, the nonempty convex subset

Z =
{

0 ≤ f ∈ Y,
∫

R3
f dv = 1 and ‖f ‖L1

3
+ ‖f ‖Lpo ≤M

}

is stable by the semi-group provided M is big enough. This set is weakly compact in Y by
Dunford-Pettis Theorem, and the continuity of St for all t ≥ 0 on Z follows from Propo-
sition 4.7. Then, Lemma 2.4 shows that there exists a nonnegative stationary solution to
(1.1) in L1

3 ∩ Lpo with unit mass. In fact, the uniform in time Lp bounds also imply the
boundedness of F in Lp for all p ∈ (1,∞). �

As a corollary of Theorem 5.1, choosing τ = 0 allows us to prove the existence of a
steady state to the linear inelastic scattering operator L when the distribution function of
the background is not a Maxwellian, generalizing the result of [34, 36, 44].

Corollary 5.2 Let F1 satisfy Assumption 2.1. Then, the linear inelastic scattering operator
L defined by (2.13) admits a unique nonnegative steady state F ∈ L1

2 ∩Lp , p ∈ (1,∞), with
unit mass and positive temperature.

Proof The existence of a nonnegative equilibrium solution F ∈ L1
2 is a direct application

of Theorem 5.1 with τ = 0. A simple application of Krein-Rutman Theorem implies the
uniqueness of the stationary solution F within the range of nonnegative distributions with
unit mass. �

Remark 5.3 (H -Theorem and Trend Towards Equilibrium) As in [34], it is possible to prove
a linear version of the classicalH -Theorem for the linear inelastic Boltzmann equation (1.1)
with τ = 0 :

∂tf = L(f ), f (t = 0)= f0 ∈ L1. (5.1)

Namely, for any convex C 1 function � : R
+ → R, let

H�(f |F)=
∫

R3
F(v)�

(
f (v)

F (v)

)
dv, f ∈ L1.

Arguing as in [34], it is easy to prove that, if the initial state f0 has unique mass and finite
entropy H�(f0|F) <∞, then

d

dt
H�(f (t)|F)≤ 0 (t ≥ 0) (5.2)

where f (t) stands for the (unique) solution to (5.1). Moreover, still arguing as in [34], one
proves that if moreover

∫
R3(1 + v2 + | logf0(v)|)f0(v)dv <∞, then

lim
t→∞

∫

R3
|f (v, t)− F(v)| dv = 0.
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6 Regularity of the Steady State

In this final section, our aim is to establish the existence of some smooth stationary solution
to (1.1). Namely, adopting the strategy of [37, Sect. 4.1], we prove

Theorem 6.1 (Regularity of stationary solutions) There exists a stationary solution F to the
Boltzmann equation

τQ(F,F )+ L(F )= 0

that belongs to C∞(R3).

We shall follow the same lines of [43, Theorem 5.5] and [37, Sect. 3.6], from which we
deduce the exponential decay in time of singularities and thus the smoothness of stationary
solutions. This proof needs the following ingredients:

i) The stability result already proved in Proposition 4.7.
ii) An estimate on the Duhamel representation [37, Proposition 3.4] of the solution to (1.1)

(see Proposition 6.2).
iii) A result of propagation of Sobolev norms (see Proposition 6.3).

Let us first extend the regularity estimate of [37, Proposition 3.4] to our situation. Recall
that (see Sect. 4.1), for f0 ∈ L1

3, the unique solution f (t) to (4.1) is given by the following
Duhamel representation:

f (v, t)= f0(v)G(v,0, t)+
∫ t

0

(
τQ+(f,f )+ L+(f )

)
(v, s)G(v, s, t)ds (6.1)

where we set

G(v, s, t)= exp

(
−
∫ t

s

�(f )(v, r)dr

)
0 ≤ s ≤ t, v ∈ R

3.

Proposition 6.2 There are some positive constants CDuh,K such that for any k ∈ N and
η ≥ 0 we have

‖f0(·)G(·,0, t)‖Hk+1
η

≤ CDuhe−Kt‖f0‖Hk+1
η+1

(
sup

0≤r≤t
‖f (·, r)‖2

Hk
η+3

+ sup
0≤r≤t

‖f (·, r)‖k+3
Hk
η+3

)

(6.2)

and
∥∥∥∥

∫ t

0
G(·, s, t)(τQ+(f,f )+ L+(f )

)
(·, s)ds

∥∥∥∥
Hk+1
η

≤ CDuh

(
sup

0≤r≤t
‖f (·, r)‖2

Hk
η+3

+ sup
0≤r≤t

‖f (·, r)‖k+3
Hk
η+3

)
. (6.3)

Proof The proof is quite similar to [43, Proposition 5.2]. Here, for simplicity we have done
it for natural k, although it is simple to generalize it to k > 0 by interpolation. Precisely, for
any f ∈ L1 define

L(f )(v)=
∫

R3
|v −w|f (w)dw.



Equilibrium Solution to the Inelastic Boltzmann Equation 867

It is clear that

�(f )(v)= L(τf + F1)(v), ∀f ∈ L1.

Now, according to [27, Lemma 4.3], for any given k ≥ 0 and any δ > 3/2, the linear operator

L : Hk
δ −→W

k+1,∞
−1

is bounded, i.e. for any δ > 3/2 and any k ≥ 0, there exists Ck,δ such that

‖L(g)‖
W
k+1,∞
−1

≤ Ck,δ‖g‖Hkδ , ∀g ∈Hk
δ .

Let us fix now k ∈ N and δ > 3/2. Since F1 ∈Hk
δ due to Assumption 2.1, one deduces that

‖�(f )‖
W
k+1,∞
−1

≤ C‖f + F1‖Hkδ , ∀f ∈Hk
δ

where, as in the rest of the proof, we shall denote any positive constant independent of f
and possibly dependent on F1 by C. Setting

F(v, s, t)=
∫ t

s

�(f )(v, r)dr,

one sees that

‖F(·, s, t)‖
W
k+1,∞
−1

≤ C√
t − s

(∫ t

s

‖f (·, r)‖2
Hkδ

dr

)1/2

+C(t − s)‖F1‖Hkδ , 0 ≤ s ≤ t.

Now, since L(g) ≥ 0 for any g ≥ 0, according to Assumption 2.1 and (2.15), we see that
there exists some constant χ > 0 such that

�(f )(v)≥ L(F1)(v)≥ χ, ∀f ∈ L1, f ≥ 0, ∀v ∈ R
3.

By taking the successive derivatives of G(v, s, t) = exp(−F(v, s, t)), one gets as in [43,
Proposition 5.2]

‖G(·, s, t)‖
W
k+1,∞
−1

≤ Ce−χ(t−s)
[√
t − s

(∫ t

s

‖f (·, r)‖2
Hkδ

dr

)(k+1)/2

+ (t − s)‖F1‖Hkδ + 1

]

≤ Ce−K(t−s)
(

1 + sup
s≤r≤t

‖f (·, r)‖k+1
Hkδ

)
, (6.4)

for some 0<K < χ . Then, we shall use the following estimate [43, Lemma 5.3] that allows
to exchange a time integral and a Sobolev norm:

∥∥∥∥

∫ t

0
Z(·, s)ds

∥∥∥∥
Hr
�

≤ 1√
λ

(∫ t

0
eλ(t−s)‖Z(·, s)‖2

Hr
�

ds

)1/2

, ∀λ > 0, ∀�, r ∈ R.

As a consequence we have for any k ≥ 0,

∥∥∥∥

∫ t

0

(
τQ+(f,f )+ L+(f )

)
(·, s)G(·, s, t)ds

∥∥∥∥
Hk+1
η
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≤ C
[∫ t

0
eK(t−s)

(∥∥τQ+(f,f )(·, s)∥∥2

Hk+1
η+1

+ ∥∥L+(f )(·, s)∥∥2

Hk+1
η+1

)

× ‖G(·, s, t)‖2
W
k+1,∞
−1

ds

]1/2

.

Recall now the so-called Bouchut-Desvillettes-Lu regularity result in Propositions 3.1
and 3.2:

‖Q+(f,f )‖
Hk+1
η+1

≤ C
[
‖f ‖2

Hk
η+3

+ ‖f ‖2
L1
η+3

]

and
∥∥L+(f )

∥∥
Hk+1
η+1

≤ C
[
‖F1‖Hk

η+3
‖f ‖Hk

η+3
+ ‖F1‖L1

η+3
‖f ‖L1

η+3

]
.

Arguing now as in [43, Proposition 5.2] and using the estimate (6.4) with the choice δ =
η+ 3, we get

∥∥∥∥

∫ t

0

(
τQ+(f,f )+ L+(f )

)
(·, s)G(·, s, t)ds

∥∥∥∥
Hk+1
η

≤ C
[∫ t

0
eK(t−s) ‖f (·, s)‖4

Hk
η+3

e−2K(t−s)
(

1 + sup
s≤r≤t

‖f (·, r)‖k+1
Hk
η+3

)2

ds

]1/2

≤ Cmax

(
sup

0≤r≤t
‖f (·, r)‖2

Hk
η+3
, sup

0≤r≤t
‖f (·, r)‖k+3

Hk
η+3

)

which proves (6.3). The proof of (6.2) is similar. �

A direct consequence of the previous result together with the uniform L2 bounds is
the uniform in time propagation of Sobolev norms. The proof is carried on exactly as in
[37, Proposition 3.5].

Proposition 6.3 Let F1 satisfy Assumption 2.1. Let f0 ∈ L1
2, f0 ≥ 0 with unit mass and

let f be the unique solution of the Boltzmann equation (1.1) in C(R+;L1
2) ∩ L∞(R+;L1

3)

associated with f0. Then, for all s > 0 and η ≥ 1, there exists w(s) > 0 such that

f0 ∈Hs
η+w =⇒ sup

t≥0
‖f (·, t)‖Hsη <+∞.

The previous ingredients allow to proof the following theorem, see [43, Theorem 5.5] for
the proof.

Theorem 6.4 (Exponential decay of singularities) Let f0 ∈ L1
2 ∩ L2 with unit mass and

let f be the unique solution of the Boltzmann equation (1.1) in C(R+;L1
2) ∩ L∞(R+;L1

3)

associated with f0. Let F1 satisfy Assumption 2.1. Let s ≥ 0, q ≥ 0 be arbitrarily large. Then
f splits into the sum of a regular and a singular part f = fR + fS where

⎧
⎨

⎩

sup
t≥0

‖fR(t)‖Hsq∩L1
2
<+∞, fR ≥ 0

∃λ > 0 : ‖fS(t)‖L1
2
=O(e−λt).
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Proof The proof is easily adapted from [37, Theorem 3.6] since the L1-stability result
(Proposition 4.7), the Duhamel representation (Proposition 6.2), the uniform propagation
of Sobolev norms (Proposition 6.3) allow to adapt directly [43, Theorem 5.5]. �

Finally, Theorem 6.4 allows to prove the main Theorem 6.1.
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